Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(11): 5068-5078, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38446141

RESUMO

Sulfate aerosol is one of the major components of secondary fine particulate matter in urban haze that has crucial impacts on the social economy and public health. Among the atmospheric sulfate sources, Mn(II)-catalyzed SO2 oxidation on aerosol surfaces has been regarded as a dominating one. In this work, we measured the reaction kinetics of Mn(II)-catalyzed SO2 oxidation in single droplets using an aerosol optical tweezer. We show that the SO2 oxidation occurs at the Mn(II)-active sites on the aerosol surface, per a piecewise kinetic formulation, one that is characterized by a threshold surface Mn(II) concentration and gaseous SO2 concentration. When the surface Mn(II) concentration is lower than the threshold value, the reaction rate is first order with respect to both Mn(II) and SO2, agreeing with our traditional knowledge. But when surface Mn(II) concentration is above the threshold, the reaction rate becomes independent of Mn(II) concentration, and the reaction order with respect to SO2 becomes greater than unity. The measured reaction rate can serve as a tool to estimate sulfate formation based on field observation, and our established parametrization corrects these calculations. This framework for reaction kinetics and parametrization holds promising potential for generalization to various heterogeneous reaction pathways.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Óxidos de Enxofre , Sulfatos/análise , Aerossóis , Catálise
2.
J Environ Sci (China) ; 139: 206-216, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105048

RESUMO

The aging process of atmospheric aerosols usually leads to a mixture of inorganic salts and organic compounds of anthropogenic origin. In organic compounds, polyhydroxy organic acids are important components, however, the study on composition and hygroscopic properties of the mixture containing inorganics and polyhydroxy organic acids is scanty. In this study, gluconic acid, the proxy of polyhydroxy organic acids, is mixed with the representative nitrate (Mg(NO3)2, Ca(NO3)2) to form aerosols. ATR-FTIR and optical microscopy are employed to study the component changes and hygroscopicity as a function of relative humidity. As relative humidity fluctuates, the FTIR-ATR spectra display that the internal mixed gluconic acid (CH2(CH)4(OH)5COOH) and nitrate can react to release acidic gases, forming relevant gluconate and further affecting the hygroscopicity. The specific presentation is particles cannot be recovered to their original size after the dehydration-hydration process and there will be some disparities in GF for mixed particles. For the gluconic acid-Ca(NO3)2/Mg(NO3)2 mixtures with molar ratios of 1:1, higher degree of reaction resulting in the production of large amounts of gluconate should be responsible to the lower hygroscopicity compared to ZSR model. For 1:2 gluconic acid-nitrate mixed systems (with higher nitrate content), the hygroscopicity of mixtures are higher than the ZSR prediction. A possible reason could be 'salt-promoting effect' on the organic fractions of the surplus inorganic salt in the mixture. These data can improve the chemical composition list evaluation, in turn hygroscopic properties and phase state of atmospheric aerosol, and then the climate effect.


Assuntos
Gluconatos , Nitratos , Molhabilidade , Compostos Orgânicos , Aerossóis/química
3.
Environ Sci Technol ; 57(48): 20074-20084, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37974434

RESUMO

Efflorescence of ammonium nitrate (AN) aerosols significantly impacts atmospheric secondary aerosol formation, climate, and human health. We investigated the effect of representative water-soluble organic compounds (WSOCs) (sucralose (SUC), glycerol (GLY), and citric acid (CA) on AN:WSOC aerosol efflorescence using vacuum Fourier transform infrared spectroscopy. Combining efflorescence relative humidity (ERH) measurements, heterogeneous nucleation rates, and model predictions, we found that aerosol viscosity, correlating with molecular diffusion, effectively predicted ERH variations among the AN:WSOC aerosols. WSOCs with higher viscosity (SUC and CA) hindered efflorescence, while GLY with a lower viscosity showed a minor effect. At a low AN:CA molar ratio (10:1), CA promoted ERH, likely due to CA crystallization. Increasing the droplet pH inhibited AN:CA aerosol efflorescence. In contrast, for AN:SUC and AN:GLY aerosols, efflorescence is pH-insensitive. With the addition of trivial sulfate, AN:SUC droplets exhibited two-stage efflorescence, coinciding with ammonium sulfate and AN efflorescence. Given the atmospheric abundance, the morphology, phase, and mixing state of nitrate aerosols are significant for atmospheric chemistry and physics. Our results suggest that AN:WSOCs aerosols can exist in the amorphous phase in the atmosphere, with efflorescence behavior depending on the aerosol composition, viscosity, pH, and the cation and anion interactions in a complex manner.


Assuntos
Nitratos , Água , Humanos , Nitratos/química , Água/química , Umidade , Sulfato de Amônio/química , Aerossóis , Concentração de Íons de Hidrogênio
4.
J Environ Sci (China) ; 127: 320-327, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522064

RESUMO

The high NO3- concentration in fine particulate matters (PM2.5) during heavy haze events has attracted much attention, but the formation mechanism of nitrates remains largely uncertain, especially concerning heterogeneous uptake of NOX by aqueous phase. In this work, the heterogeneous uptake of NO2 by sodium acetate (NaAc) droplets with different NO2 concentrations and relative humidity (RH) conditions is investigated by microscopic Fourier transform infrared spectrometer (micro-FTIR). The IR feature changes of aqueous droplets indicate the acetate depletion and nitrite formation in humid environment. This implies that acetate droplets can provide the alkaline aqueous circumstances caused by acetate hydrolysis and acetic acid (HAc) volatilization for nitrite formation during the NO2 heterogeneous uptake. Meanwhile, the nitrite formation will exhibit a pH neutralizing effect on acetate hydrolysis, further facilitating HAc volatilization and acetate depletion. The heterogeneous uptake coefficient increases from 5.2 × 10-6 to 1.27 × 10-5 as RH decreases from 90% to 60% due to the enhanced HAc volatilization. Furthermore, no obvious change in uptake coefficient with different NO2 concentrations is observed. This work may provide a new pathway for atmospheric nitrogen cycling and secondary nitrite aerosol formation.


Assuntos
Nitritos , Dióxido de Nitrogênio , Acetato de Sódio , Aerossóis/análise , Material Particulado , Água
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 258: 119790, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-33946015

RESUMO

Tropospheric aerosols are usually complex mixtures of inorganic and organic components, which show non-ideal behavior in hygroscopicity, mass transfer, and partitioning between gas and aerosols. In this study, we applied a novel approach based on a combination of a pulse RH controlling system and a rapid scan vacuum FTIR spectrometer to investigate the mass transfer limit of magnesium sulfate/glutaric acid (GA) mixture aerosol particles. The liquid water band area of the aerosols is used to reveal the mass transfer limit during the rapid pulse RH downward and upward processes. Partitioning equilibrium between the aerosol particles and water gas phase is observed at the higher RH range (73-50%). When the RH is lower than 40%, there is a hysteresis for the liquid water content changing with the RH, indicating the limited water mass transfer in the aerosols.

6.
Chemosphere ; 277: 130320, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33773310

RESUMO

The efflorescence transitions of aerosol particles have been intensively investigated due to their critical impacts on global climate and atmospheric chemistry. In the present study, we present a critical review of efflorescence kinetics focusing on three key issues: the efflorescence relative humidity (ERH) and the influence factors for aerosol ERH (e.g. particle sizes, and temperature); efflorescence processes of mixed aerosols, concerning the effect of coexisting inorganic and organic components on the efflorescence of inorganic salts; homogeneous and heterogeneous nucleation rates of pure and mixed aerosols. Among the previous studies, there are significant discrepancies for measured aerosol ERH under even the same conditions. Moreover, the interactions between organic and inorganic components remain largely unclear, causing efflorescence transition behaviours and chemical composition evolutions of certain mixed systems to be debatable. Thus, it is important to better understand efflorescence to gain insights into the physicochemical properties and characterize observed efflorescence characteristics of atmospheric particles, as well as guide further studies on aerosol hygroscopicity and reactivity.


Assuntos
Cinética , Aerossóis , Umidade , Tamanho da Partícula , Molhabilidade
7.
Chemosphere ; 276: 130140, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33690047

RESUMO

The chemical compositions in atmospheric aerosols, which often evolve with environmental factors, have significant impact on climate and human health, while our fundamental understanding of chemical process is limited owing to their sensitive to atmospheric conditions. pH and RH are critical chemical factors of aerosols, impacting reaction pathways and kinetics that ultimately govern final components in particles. Herein, we monitored the chemical composition in internally mixed malonic acid/calcium nitrate with the mole ratio of 1:1 as a function of pH and relative humidity (RH). At 30% RH, lower than efflorescence relative humidity (ERH) of pure malonic acid aerosols, malonic acid still exhibits solution feature reflected by IR spectra, which was observed to transform to malonate, along with water loss and nitrate depletion. At another RH of 54% and 80%, the similar chemical process happened with less reaction rate. The response of chemical reaction between malonic acid and calcium nitrate to pH was studied by manipulating the starting pH of the bulk solution through dropping aqueous sodium hydroxide. Due to lower H+ concentration at higher pH, the formation and liberation of HNO3 slow down, as well as water loss. After a down-up RH cycle, the water loss was obvious and grew with the decrease in pH. These measurements are improving our understanding of chemical composition evolution dependent upon pH and RH from a fundamental physical chemistry perspective and are critical for connecting chemistry and climate.


Assuntos
Malonatos , Nitratos , Aerossóis , Compostos de Cálcio , Humanos , Umidade
8.
J Phys Chem A ; 125(7): 1589-1597, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33576639

RESUMO

The Hofmeister effect of inorganic ions to precipitate proteins has been used to understand the coagulation phenomenon in colloid and protein science. Herein, for the first time, this effect is studied on the hygroscopicity of aerosols using ATR-FTIR spectroscopy. The representative Hofmeister salts (MgSO4, KCl, NH4NO3) and amino acid (glycine) with different amino acid/salt molar ratios (ASRs) are mixed and atomized into micrometer-sized particles. For mixed kosmotrope (MgSO4)/glycine and chaotrope (NH4NO3)/glycine with an ASR of 1:1, both ERHs (efflorescence relative humidities) and DRHs (deliquescence relative humidities) are absent. However, for the mixtures of glycine and neutral salt (KCl), no DRH is observed while 66.2 and 61.4% ERH of glycine is detected for mixtures with ASRs of 1:1 and 1:3, respectively, which is similar to pure glycine. For the mixture of NH4NO3/glycine with an ASR of 1:3, ERH and DRH are found to be 15.4 and 32.2% RH, less than that of pure NH4NO3. Further, interactions between glycine-salt and/or water is also studied in the mixtures during hydration and dehydration. Water-mediated ion-glycine interaction is detected based on the two glycine bands merging into one band. Glycine-SO42- interaction is present for glycine/sulfate in all ASRs, while glycine-NO3- interaction is only seen for 1:3 glycine/NH4NO3 mixtures during hydration. This work opens a window to understand the Hofmeister effect on the hygroscopicity of atmospheric aerosols.

9.
Chemosphere ; 264(Pt 2): 128507, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33045506

RESUMO

The deliquescence behavior of atmospheric aerosols has significant effects on global climate and atmospheric heterogeneous chemistry but remains largely unclear. The deliquescence kinetics data of micron-sized particles are scarce owing to the difficulty on performing the time-resolved dissolution measurements. In view of this technique bottleneck, an applicable and powerful experimental technique, i. e., vacuum FTIR combining pulsed relative humidity (RH) change technique, is introduced for gaining deliquescence kinetics information of three inorganic salts. For NaCl and (NH4)2SO4 aerosols, a solid-liquid mixing state derived from partial dissolution of NaCl and (NH4)2SO4 crystals is present during deliquescence, and the recrystallization will occur once RH decreases. While for NaNO3 particles, the recrystallization cannot occur as RH decreases owing to the formed amorphous NaNO3 solids after dying. The dissolution rates of NaCl, (NH4)2SO4 and NaNO3 solid particles are calculated, as a first attempt, by the upward pulsed RH mode. The measured rates show a significant dependency on ambient RH with three orders of magnitude. For NaCl particles, the measured J values range from 1.41 × 10-4 to 7.67 × 10-1 s-1 at RH of 73.41-75.15%. The J for (NH4)2SO4 particles is 7.34 × 10-3 to 2.46 × 100 s-1 over the RH range of 77.27%-80.13%. The J values for amorphous NaNO3 solids range from 6.01 × 10-3 to 2.63 × 100 s-1 as RH increases from 71.15% to 73.84%. Our results fill in the dataset of atmospheric models describing the kinetics features of deliquescence and provide an insight into dynamic solid-solution transition for PM2.5 particles.


Assuntos
Cloreto de Sódio , Aerossóis , Cinética , Solubilidade , Vácuo
10.
J Phys Chem A ; 124(51): 10870-10878, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33320676

RESUMO

The hygroscopic behaviors and phase changes of inorganic aerosols have been widely explored, but little is known on the hygroscopicity of soluble carbonates. The hydrated states of solid Na2CO3 particles in an air environment remain largely unclear. In this work, the hygroscopic growth, hydrated form transformations, and influence of internal Li2CO3 on phase transitions of Na2CO3 particles are investigated in linear and pulsed relative humidity (RH) changing modes by the vacuum Fourier transform infrared (FTIR) technique. For pure Na2CO3, aqueous droplets effloresced to a mixture of anhydrous Na2CO3 and Na2CO3·H2O with the initial efflorescence relative humidity (ERH) of 50.8%, probably concerning the formation of Na2CO3·10H2O in the conversion from aqueous to anhydrous Na2CO3. A reverse process is presented during the three-stage deliquescence transition beginning at ∼60.1% RH; i.e., anhydrous Na2CO3 transforms into aqueous Na2CO3 and Na2CO3·10H2O in stage I, Na2CO3·10H2O dissolves to aqueous Na2CO3 in stage II, and Na2CO3·H2O dissolves into aqueous Na2CO3 in stage III. For internally mixed Na2CO3/Li2CO3 particles, a double salt, LiNaCO3, is found in mixed crystalline phases for the first time, leading to the eutonic composition with Na2CO3. The experimental observations point to the excess of LiNaCO3 and complete consumption of Na2CO3 in eutonic composition formation, which results in the absence of Na2CO3 hydrates during phase transitions. The results provide key data for model simulations of hygroscopic properties and phase transitions of Na2CO3 as well as mixed soluble carbonates.

11.
Chemosphere ; 240: 124744, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31557643

RESUMO

The heterogeneous reactions of α-Al2O3 particles with a mixture of ozone (∼50 ppm) and isoprene (∼50 ppm) were studied as a function of relative humidities (RHs). The reactions were monitored in real time through the microscopic Fourier transform infrared (micro-FTIR) spectrometer. The results show that the presence of ozone leads to the rapid conversion of isoprene to carboxylate (COO-) ions on the surfaces of α-Al2O3 particles in the initial stage. The water significantly suppresses the formation of the carboxylate ions. For the isoprene ozonolysis reaction on the α-Al2O3 particles, the reactive uptake coefficient is strongly suppressed by over a factor of 8 when the RH increases from 8% to 89%. The negative correlation between RH with the secondary organic aerosol (SOA) produced by isoprene ozonolysis plays a key role in the actual atmospheric environment under high humidity. Our results may provide insight into the ozonolysis process of biogenic alkenes over mineral aerosol surfaces with the influence of RHs.


Assuntos
Butadienos/química , Hemiterpenos/química , Modelos Químicos , Ozônio/química , Aerossóis , Umidade , Água
12.
J Environ Sci (China) ; 87: 250-259, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31791498

RESUMO

Water-uptakes of pure sodium carbonate (Na2CO3), pure ß-alanine and internally mixed ß-alanine/Na2CO3 aerosol particles with different mole ratios are first monitored using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) technique. For pure Na2CO3 aerosol particles, combining the absorptions at 877 and 1422 cm-1 with abrupt water loss shows the efflorescence relative humidity (ERH) of 62.9%-51.9%. Upon humidifying, solid Na2CO3 firstly absorbs water to from Na2CO3·H2O crystal at 72.0% RH and then deliquesces at 84.5% RH (DRH). As for pure ß-alanine particles, the crystallization takes place in the range of 42.4%-33.2% RH and becomes droplets at ~88.2% RH. When ß-alanine is mixed with Na2CO3 at various mole ratios, it shows no efflorescence of Na2CO3 when ß-alanine to Na2CO3 mole ratio (OIR) is 2:1. For 1:1 and 1:2 ß-alanine/Na2CO3 aerosols, the ERHs of Na2CO3 are 51.8%-42.3% and 57.1%-42.3%, respectively. While ß-alanine crystal appears from 62.7% RH for 2:1 and 59.4% RH for both 1:1 and 1:2 particles and lasts to driest state. On hydration, the DRH is 44.7%-75.2% for Na2CO3 with the OIR of 1:1 and 44.7%-69.0% for 1:2 mixture, and those of ß-alanine are 74.8% for 2:1 mixture and 68.9% for two others. After the first dehumidification-humidification, all the water contents decrease despite of constituent fraction. And at ~92% RH, the remaining water contents are 92%, 89% and 82% at ~92% RH, corresponding to OIR of 2:1, 1:1 and 1:2 mixed system, respectively.


Assuntos
Alanina/química , Carbonatos/química , Modelos Químicos , Espectroscopia de Infravermelho com Transformada de Fourier , Molhabilidade
13.
Environ Sci Technol ; 53(11): 6225-6234, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30938517

RESUMO

Water-soluble organic acid salts are important components of atmospheric aerosols. Despite their importance, it is still not clear how water-soluble organic acid salts influence interactions between aerosols and water vapor in the atmosphere. In this study, the hygroscopic behaviors and chemical compositions of aerosol particles containing water-soluble organic acid salt ((CH2) n(COONa)2, n = 0, 1, 2) and (NH4)2SO4 were measured using in situ attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The ammonium depletion due to release of gaseous NH3 was found in mixed aerosols composed of (CH2) n(COONa)2 ( n = 1, 2) and (NH4)2SO4 upon dehydration. The ammonium loss could modify the aerosol composition, resulting in the formation of corresponding organic acid and monosodium dicarboxylate in mixed particles with high and low (NH4)2SO4 content, respectively. Due to the weaker hydrolysis of oxalate anions, the ammonium depletion was not observed for the Na2C2O4/(NH4)2SO4 mixtures. The changes in the particle composition led to the decreased water uptake upon hydration as compared to that upon dehydration. Our findings reveal that interactions between water-soluble organic acid salts and (NH4)2SO4 in aqueous aerosols may affect the repartition of NH3 between the condensed and gas phases, thus modifying composition and physicochemical properties of aerosols as well as relevant chemical processes.


Assuntos
Compostos de Amônio , Sais , Aerossóis , Sulfato de Amônio , Molhabilidade
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 219: 104-109, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31030037

RESUMO

Sodium nitrate as an important inorganic component can be chemically formed from the reactions of nitrogen oxides and nitric acid (HNO3) with sea salt in atmosphere. Organic acids contribute a significant fraction of photochemical formed secondary organics that can condense on the preexisting nitrate-containing particles. Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Here we studied the hygroscopicity of aerosol particles composed of sodium nitrate and glutaric acid (GA) by using a pulsed RH controlling system and a rapid scan vacuum FTIR spectrometer (PRHCS-RSVFTIR). The water content in the particles and efflorescence ratios of both NaNO3 and GA at ambient relative humidity (RH) as a function of time were obtained from the rapid-scan infrared spectra with a sub-second time resolution. Our study showed that both NaNO3 and GA crystallized at 44.1% RH during two different RH control processes (stepwise and pulsed processes). It was found that the addition of GA could suppress the efflorescence of NaNO3 during the dehumidifying process. In addition, the mixed NaNO3/GA particles release HNO3 during the dehumidifying and humidifying cycles. These findings are important in further understanding the role of interactions between water-soluble dicarboxylic acids and nitrates on hygroscopicity and environmental effects of atmospheric particles.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 208: 255-261, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30340205

RESUMO

The hygroscopicity and phase transition of the mixed aerosol particles are significantly dependent upon relative humidity (RH) and interactions between particle components. Although the efflorescence behavior of particles has been studied widely, the crystallization behavior of each component in the particles is still poorly understood. Here, we study the hygroscopicity and crystallization behaviors of internally mixed ammonium sulfate (AS)/glutaric acid (GA) aerosols by a vacuum FTIR spectrometer coupled with a RH-controlling system. The mixed AS/GA aerosols in two different RH control processes (equilibrium and RH pulsed processes) show the fractional crystallization upon dehydration with AS crystallizing prior to GA in mixed particles with varying organic to inorganic molar ratios (OIRs). The initial efflorescence relative humidity (ERH) of AS decreased from ~43% for pure AS particles to ~41%, ~36% and ~34% for mixed AS/GA particles with OIRs of 2:1, 1:1 and 1:2, respectively. Compared to the ERH of 35% for pure GA, the initial ERHs of GA in mixed AS/GA particles were determined to be 31%, 30% and 28% for OIRs of 2:1, 1:1 and 1:2, respectively, indicating that the presence of AS decreased the crystallization RH of GA instead of inducing the heterogeneous nucleation of GA. When the AS fractions first crystallized at around 36% RH in the 1:1 mixed particles, GA remained noncrystalline until 30% RH. For the first time, the crystallization ratios of AS and GA are obtained for the internally mixed particles during the rapid downward RH pulsed process. The crystallization ratio of AS can reach around 100% at around 24% RH for both pure AS and the 1:1 mixed particles, consistent with the equilibrium RH process. It is clear that the RH downward rate did not influence efflorescence behavior of AS in pure AS and AS in mixed particles. In contrast, the crystallization ratio of GA can reach about 90% at 15.4% RH for pure GA particles in excellent agreement with the equilibrium RH process, whereas it is only up to 50% at 16.0% RH in the 1:1 mixed particles during the rapid downward pulsed process lower than that of the equilibrium RH process. Our results reveal that the rapid RH downward rate could inhibit the efflorescence of GA in the mixed droplets.

16.
Chemosphere ; 215: 554-562, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30342400

RESUMO

The hygroscopicity of aerosols is dependent upon their chemical composition. When their chemical compositions are altered, the water content in aerosols often changes, which may further modify phase behaviour. However, the study of phase behaviour dependence on chemical reactions is still limited. In this work, internally mixed sodium pyruvate (SP)/ammonium sulfate (AS) droplets were studied using an in-situ ATR-FTIR spectrometer. FTIR spectral analysis showed that solid sodium sulfate (SS) formed during the dehydration process, indicating a chemical reaction between SP and AS. In addition, the water content decreased after a dehydration-hydration process despite organic salt (SS) to inorganic salt (AS) mole ratios (OIRs) During the second relative humidity (RH) cycle, the water content remained constant, however, the efflorescence relative humidity (ERH) was lower than that in the first dehydration. The crystal relative humidities (CRHs) of SS are 66.7-53.1%, 66.0-58.2%, 62.2-57.1% and 49.6-43.6% for OIRs of 3:1, 2:1, 1:1 and 1:3, respectively, suggesting the crystallization of SS was favoured by higher SP content. For 2:1 OIRs, the solid SS was the greatest and an excess of either SP or AS blocked the solid SS formation. At a constant 80% RH, depletion of reagents was ∼0.97, and water loss was ∼0.6 in ∼40 min. After 90 min, solid SS formed. The chemical reaction was faster than water loss; furthermore, water loss from the chemical reaction led to solid SS above the ERH of pure SS particles (∼75% RH). When the RH changed rapidly, the reaction was slow and solid SS decreased.


Assuntos
Aerossóis/química , Sulfato de Amônio/química , Piruvatos/química , Sulfatos/química , Cristalização , Umidade , Água/química , Molhabilidade
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 201: 399-404, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-29775933

RESUMO

Although the dicarboxylic acid has been reported to react with nitrate for aged internally mixed aerosols in atmosphere, the quantitative nitrate depletion dependent upon composition in particles is still not well constrained. The chemical composition evolutions for malonic acid/sodium nitrate (MA/SN), malonic acid/magnesium nitrate (MA/MN) and malonic acid/calcium nitrate (MA/CN) particles with the organic to inorganic molar ratio (OIR) of 1:1 are investigated by vacuum Fourier transform infrared spectroscopy (FTIR). Upon dehydration, the intensity of the asymmetric stretching mode of COO- group (νas-COO-) increases, accompanying the decrease in OH feather band and COOH band and NO3- band. These band changes suggest malonate salts formation and HNO3 release. The quantitative NO3- depletion data shows that the reactivity of MA-MN is most and that of MA-SN is least. Analysis of the stretching mode of COO- indicates the different bond type between metal cation and carboxylate anion. In addition, water content in particles decreases at the constant RH, implying water loss with the chemical reaction. When the RH changes very quickly, water uptake delay during the humidification process reveals that water mass transport is limited below 37% RH.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 200: 179-185, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29680496

RESUMO

Hygroscopicity and volatility of single magnesium acetate (MgAc2) aerosol particles at various relative humidities (RHs) are studied by a single-beam optical tweezers, and refractive indices (RIs) and morphology are characterized by cavity enhanced Raman spectroscopy. Gel formation and volatilization of acetate acid (HAc) in MgAc2 droplets are observed. Due to the formation of amorphous gel structure, water transposition in droplets at RH < 50% is significantly impeded on a time scale of 140,000 s. Different phase transition at RH < 10% is proposed to explain the distinct water loss after the gel formation. To compare volatilization of HAc in different systems, MgAc2 and sodium acetate (NaAc) droplets are maintained at several different stable RHs during up to 86,000 s. At RH ≈ 74%, magnesium hydroxide (Mg(OH)2) inclusions are formed in MgAc2 droplets due to the volatilization of HAc, and whispering gallery modes (WGMs) of MgAc2 droplets in the Raman spectrum quench after 50,000 s. In sharp contrast, after 86,000 s at RH ≈ 70%, NaAc droplets are in well-mixed liquid states, containing soluble sodium hydroxide (NaOH). At this state, the RI of NaAc droplet is increased, and the quenching of WGMs is not observable.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 192: 420-426, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29202386

RESUMO

Hygroscopicity and volatility of secondary organic aerosol (SOA) are two important properties, which determine the composition, concentration, size, phase state of SOA and thus chemical and optical properties for SOA. In this work, magnesium acetate (Mg(Ac)2) aerosol was used as a simple SOA model in order to reveal relationship between hygroscopicity and volatility. A novel approach was set up based on a combination of a vacuum FTIR spectrometer and a home-made relative humidity (RH) controlling system. The striking advantage of this approach was that the RH and the compositions of aerosols could be obtained from a same IR spectrum, which guaranteed the synchronism between RH and spectral features on a sub-second scale. At the constant RH of 90% and 80% for 3000s, the water content within Mg(Ac)2 aerosol particles decreased about 19.0% and 9.4% while there were 13.4% and 6.0% of acetate loss. This was attributed to a cooperation between volatile of acetic acid and Mg2+ hydrolysis in Mg(Ac)2 aerosols, which greatly suppressed the hygroscopicity of Mg(Ac)2 aerosols. When the RH changed with pulsed mode between ~70% and ~90%, hygroscopicity relaxation was observed for Mg(Ac)2 aerosols. Diffuse coefficient of water in the relaxation process was estimated to be ~5×10-12m2·s-1 for the Mg(Ac)2 aerosols. Combining the IR spectra analysis, the decrease in the diffuse coefficient of water was due to the formation of magnesium hydroxide accompanying acetic acid evaporation in the aerosols.

20.
Chemosphere ; 188: 532-540, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28910728

RESUMO

In this research, we applied a pulsed RH controlling system and a rapid scan vacuum FTIR spectrometer (PRHCS-RSVFTIR) to investigate hygroscopicity of internally mixed (NH4)2SO4(AS)/citric acid (CA) particles. The water content and efflorescence ratio of AS in the particles and ambient relative humidity (RH) as a function of time were obtained with a subsecond time resolution. The hygroscopic behavior of AS aerosols in two different RH control processes (equilibrium and RH pulsed processes) showed that AS droplets crystallize with RH ranging from 42% to 26.5%. It was found that the half-life time ratio between the water content in the CA particles and the gas phase under RH pulsed change was greater than one under low RH conditions (<40% RH), indicating the significant water transfer limitation due to the high viscosity of CA aerosols at low RH, especially at RH<20%. In addition, water diffusion constants between 10-12 m2 s-1 and 10-13 m2 s-1 in micron size CA aerosols were obtained in a sub-second and second timescale. The addition of AS enhanced the water transfer limitation in the mixed aerosols. The efflorescence relative humidity (ERH) of the mixed particles with AS/CA by molar ratio 3:1 was found between 22.7% and 5.9%, which was much lower than AS particles. No efflorescence process was observed for the 1:1 mixed particles, indicating that CA greatly suppressed nucleation of AS. Our results have shown that the PRHCS-RSVFTIR is effective to simulate hygroscopicity and water transport of aerosols under fast variations in RH in atmosphere.


Assuntos
Sulfato de Amônio/química , Ácido Cítrico/química , Umidade , Material Particulado/química , Água/análise , Aerossóis , Atmosfera , Cristalização , Difusão , Espectroscopia de Infravermelho com Transformada de Fourier , Vácuo , Viscosidade , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...